\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{x^2 (d+e x)} \, dx\) [462]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 352 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\frac {\left (c^2 d^4+28 a c d^2 e^2+19 a^2 e^4+2 c d e \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e}-\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}-\frac {\left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 \sqrt {c} \sqrt {d} e^{3/2}}-\frac {1}{2} a^{3/2} \sqrt {d} e^{3/2} \left (5 c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right ) \]

[Out]

-1/3*(-c*d*x+3*a*e)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x-1/16*(-5*a^3*e^6-45*a^2*c*d^2*e^4-15*a*c^2*d^4*e
^2+c^3*d^6)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2
))/e^(3/2)/c^(1/2)/d^(1/2)-1/2*a^(3/2)*e^(3/2)*(3*a*e^2+5*c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)
/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*d^(1/2)+1/8*(c^2*d^4+28*a*c*d^2*e^2+19*a^2*e^4+2*c*d
*e*(7*a*e^2+c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {863, 826, 828, 857, 635, 212, 738} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=-\frac {1}{2} a^{3/2} \sqrt {d} e^{3/2} \left (3 a e^2+5 c d^2\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )+\frac {\left (19 a^2 e^4+2 c d e x \left (7 a e^2+c d^2\right )+28 a c d^2 e^2+c^2 d^4\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 e}-\frac {\left (-5 a^3 e^6-45 a^2 c d^2 e^4-15 a c^2 d^4 e^2+c^3 d^6\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 \sqrt {c} \sqrt {d} e^{3/2}}-\frac {(3 a e-c d x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 x} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^2*(d + e*x)),x]

[Out]

((c^2*d^4 + 28*a*c*d^2*e^2 + 19*a^2*e^4 + 2*c*d*e*(c*d^2 + 7*a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*
x^2])/(8*e) - ((3*a*e - c*d*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*x) - ((c^3*d^6 - 15*a*c^2*d^4
*e^2 - 45*a^2*c*d^2*e^4 - 5*a^3*e^6)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*Sqrt[c]*Sqrt[d]*e^(3/2)) - (a^(3/2)*Sqrt[d]*e^(3/2)*(5*c*d^2 + 3*a*e^
2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2
])])/2

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 826

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m +
 2*p + 2))), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 828

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^
2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a e+c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2} \, dx \\ & = -\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}-\frac {1}{2} \int \frac {\left (-a e \left (5 c d^2+3 a e^2\right )-c d \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x} \, dx \\ & = \frac {\left (c^2 d^4+28 a c d^2 e^2+19 a^2 e^4+2 c d e \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e}-\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}+\frac {\int \frac {4 a^2 c d^2 e^3 \left (5 c d^2+3 a e^2\right )-\frac {1}{2} c d \left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 c d e} \\ & = \frac {\left (c^2 d^4+28 a c d^2 e^2+19 a^2 e^4+2 c d e \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e}-\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}+\frac {1}{2} \left (a^2 d e^2 \left (5 c d^2+3 a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx-\frac {\left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 e} \\ & = \frac {\left (c^2 d^4+28 a c d^2 e^2+19 a^2 e^4+2 c d e \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e}-\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}-\left (a^2 d e^2 \left (5 c d^2+3 a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )-\frac {\left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 e} \\ & = \frac {\left (c^2 d^4+28 a c d^2 e^2+19 a^2 e^4+2 c d e \left (c d^2+7 a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e}-\frac {(3 a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 x}-\frac {\left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 \sqrt {c} \sqrt {d} e^{3/2}}-\frac {1}{2} a^{3/2} \sqrt {d} e^{3/2} \left (5 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 1.04 (sec) , antiderivative size = 309, normalized size of antiderivative = 0.88 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x} \sqrt {d+e x} \left (3 a^2 e^3 (-8 d+11 e x)+2 a c d e^2 x (34 d+13 e x)+c^2 d^2 x \left (3 d^2+14 d e x+8 e^2 x^2\right )\right )-24 a^{3/2} \sqrt {c} d e^3 \left (5 c d^2+3 a e^2\right ) x \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )-3 \left (c^3 d^6-15 a c^2 d^4 e^2-45 a^2 c d^2 e^4-5 a^3 e^6\right ) x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )\right )}{24 \sqrt {c} \sqrt {d} e^{3/2} x \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^2*(d + e*x)),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(3*a^2*e^3*(-8*d + 1
1*e*x) + 2*a*c*d*e^2*x*(34*d + 13*e*x) + c^2*d^2*x*(3*d^2 + 14*d*e*x + 8*e^2*x^2)) - 24*a^(3/2)*Sqrt[c]*d*e^3*
(5*c*d^2 + 3*a*e^2)*x*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])] - 3*(c^3*d^6 - 15*a
*c^2*d^4*e^2 - 45*a^2*c*d^2*e^4 - 5*a^3*e^6)*x*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e
*x])]))/(24*Sqrt[c]*Sqrt[d]*e^(3/2)*x*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2075\) vs. \(2(308)=616\).

Time = 0.75 (sec) , antiderivative size = 2076, normalized size of antiderivative = 5.90

method result size
default \(\text {Expression too large to display}\) \(2076\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)+5/2*(a*e^2+c*d^2)/a/d/e*(1/5*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(5/2)+1/2*(a*e^2+c*d^2)*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/
16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c
*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+a*d*e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)
*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2
)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))
+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/
2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a
*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))))+6*c/a*(1/12*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a
*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+5/24*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(
a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)
/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d
^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))))-e/d^2*(1/5*(a*d*e+(a*e^2+
c*d^2)*x+c*d*e*x^2)^(5/2)+1/2*(a*e^2+c*d^2)*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d
*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+a*d*e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a
*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e
^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*
d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/
(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*
d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))))+e/d^2*(1/5*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2
)*(x+d/e))^(5/2)+1/2*(a*e^2-c*d^2)*(1/8*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+
d/e))^(3/2)-3/16*(a*e^2-c*d^2)^2/c/d/e*(1/4*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)
*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^
2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))))

Fricas [A] (verification not implemented)

none

Time = 10.89 (sec) , antiderivative size = 1717, normalized size of antiderivative = 4.88 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[-1/96*(3*(c^3*d^6 - 15*a*c^2*d^4*e^2 - 45*a^2*c*d^2*e^4 - 5*a^3*e^6)*sqrt(c*d*e)*x*log(8*c^2*d^2*e^2*x^2 + c^
2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sq
rt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 24*(5*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*sqrt(a*d*e)*x*log((8*a^2*d^2*e
^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2
 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 4*(8*c^3*d^3*e^3*x^3 - 24*a^2*c*d^2*e^4 + 2*(7*
c^3*d^4*e^2 + 13*a*c^2*d^2*e^4)*x^2 + (3*c^3*d^5*e + 68*a*c^2*d^3*e^3 + 33*a^2*c*d*e^5)*x)*sqrt(c*d*e*x^2 + a*
d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2*x), 1/48*(3*(c^3*d^6 - 15*a*c^2*d^4*e^2 - 45*a^2*c*d^2*e^4 - 5*a^3*e^6)*sqr
t(-c*d*e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c
^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 12*(5*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*sqrt(a*d*e)*
x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)
*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 2*(8*c^3*d^3*e^3*x^3 - 24*a^2
*c*d^2*e^4 + 2*(7*c^3*d^4*e^2 + 13*a*c^2*d^2*e^4)*x^2 + (3*c^3*d^5*e + 68*a*c^2*d^3*e^3 + 33*a^2*c*d*e^5)*x)*s
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2*x), 1/96*(48*(5*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*sqrt(-a*d*
e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^
2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) - 3*(c^3*d^6 - 15*a*c^2*d^4*e^2 - 45*a^2*c*d^2*e^4 - 5*a
^3*e^6)*sqrt(c*d*e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (
c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(8*c^3*d^3*e^3*x^
3 - 24*a^2*c*d^2*e^4 + 2*(7*c^3*d^4*e^2 + 13*a*c^2*d^2*e^4)*x^2 + (3*c^3*d^5*e + 68*a*c^2*d^3*e^3 + 33*a^2*c*d
*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2*x), 1/48*(24*(5*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*
sqrt(-a*d*e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*
e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + 3*(c^3*d^6 - 15*a*c^2*d^4*e^2 - 45*a^2*c*d^2
*e^4 - 5*a^3*e^6)*sqrt(-c*d*e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a
*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(8*c^3*d^3*e^3*x^3 - 24*a^
2*c*d^2*e^4 + 2*(7*c^3*d^4*e^2 + 13*a*c^2*d^2*e^4)*x^2 + (3*c^3*d^5*e + 68*a*c^2*d^3*e^3 + 33*a^2*c*d*e^5)*x)*
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/x**2/(e*x+d),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )} x^{2}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)*x^2), x)

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 473, normalized size of antiderivative = 1.34 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\frac {1}{24} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, {\left (4 \, c^{2} d^{2} e x + \frac {7 \, c^{4} d^{5} e^{2} + 13 \, a c^{3} d^{3} e^{4}}{c^{2} d^{2} e^{2}}\right )} x + \frac {3 \, c^{4} d^{6} e + 68 \, a c^{3} d^{4} e^{3} + 33 \, a^{2} c^{2} d^{2} e^{5}}{c^{2} d^{2} e^{2}}\right )} + \frac {{\left (5 \, a^{2} c d^{3} e^{2} + 3 \, a^{3} d e^{4}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{\sqrt {-a d e}} + \frac {{\left (c^{3} d^{6} - 15 \, a c^{2} d^{4} e^{2} - 45 \, a^{2} c d^{2} e^{4} - 5 \, a^{3} e^{6}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{16 \, \sqrt {c d e} e} - \frac {{\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} c d^{3} e^{2} + {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{3} d e^{4} + 2 \, \sqrt {c d e} a^{3} d^{2} e^{3}}{a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*(4*c^2*d^2*e*x + (7*c^4*d^5*e^2 + 13*a*c^3*d^3*e^4)/(c^2*d
^2*e^2))*x + (3*c^4*d^6*e + 68*a*c^3*d^4*e^3 + 33*a^2*c^2*d^2*e^5)/(c^2*d^2*e^2)) + (5*a^2*c*d^3*e^2 + 3*a^3*d
*e^4)*arctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/sqrt(-a*d*e) + 1/16*
(c^3*d^6 - 15*a*c^2*d^4*e^2 - 45*a^2*c*d^2*e^4 - 5*a^3*e^6)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e
)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*e) - ((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^
2*x + a*e^2*x + a*d*e))*a^2*c*d^3*e^2 + (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^3*d*e^
4 + 2*sqrt(c*d*e)*a^3*d^2*e^3)/(a*d*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{x^2\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x^2*(d + e*x)), x)